An Official publication of The Asian Congress of Neurological Surgeons (AsianCNS)

Search Article
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Advertise Subscribe Contacts Login  Facebook Tweeter
  Users Online: 1524 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  

   Table of Contents      
Year : 2018  |  Volume : 13  |  Issue : 3  |  Page : 714-720

Morbidity audit of 704 traumatic brain injury cases in a dedicated South Indian trauma center

1 Department of Neurosurgery, Narayana Medical College Hospital, Nellore, Andhra Pradesh, India
2 Department of Community Medicine, Andaman and Nicobar Islands Institute of Medical Sciences, Port Blair, Andaman and Nicobar, India
3 National Institute of Epidemiology, ICMR, Chennai, Tamil Nadu, India
4 Department of Radiology, Narayana Medical College Hospital, Nellore, Andhra Pradesh, India
5 Department of Emergency Medicine, Narayana Medical College Hospital, Nellore, Andhra Pradesh, India

Date of Web Publication31-Jul-2018

Correspondence Address:
V Umamaheswara Reddy
Department of Radiodiagnosis, Narayana Medical College Hospital, Chinthareddypalem, Nellore - 524 003, Andhra Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ajns.AJNS_131_16

Rights and Permissions

Background: In the era of evidence-based health care, protocol of intervention in traumatic brain injury (TBI) cases help decide more easily and safely about patients and prevent unnecessary transfer of patients to other centers. Objectives: The objective of this study is to provide protocol-based intervention and evaluate the epidemiological, clinical characteristics of TBI cases. Methods: This prospective study was conducted on 704 patients who were suspected of TBI at the Department of Neurosurgery, Narayana Medical College and Hospital, followed by protocol-based intervention assessed and reassessed repeatedly. Results: Overall, TBI involved 569 (80.82%) adults in the productive age groups (21–60 years); among males 81.47%. Among males, highest (23.15%) cases were in the age group of 31–40 years while in females, majority (27.04%) was among 41–50 years. Road traffic accidents were the most common (54.12%) mechanism of injury followed by fall (21.31%) and two-wheelers (15.20%). More than half sustained mild TBI (51.42%) while 26.28% moderate TBI and 22.30% severe TBI; among males, severe TBI victims 102 (18.82%) were in the productive age group. Loss of consciousness was almost a universal and significant observation (95.45%); vomiting was next common finding (76.42%). Bleeding from the ear-nose-throat (ENT) region was more in males (33.58%) than females (20.75%). Glasgow coma scale was significantly related with loss of consciousness (91.08%), vomiting (63.06%), and ENT bleeding (44.59%) in severe, moderate, and mild injuries. Conclusion: A rational clinical acumen with judicious use of diagnostic protocol leads to better management of TBI without unnecessary imaging and thus reduce total health-care costs.

Keywords: Outcome, prediction, traumatic brain injury

How to cite this article:
Singh AK, Jena RK, Pal R, Munivenkatappa A, Reddy V U, Hegde KV, Kumar S S, Agrawal A. Morbidity audit of 704 traumatic brain injury cases in a dedicated South Indian trauma center. Asian J Neurosurg 2018;13:714-20

How to cite this URL:
Singh AK, Jena RK, Pal R, Munivenkatappa A, Reddy V U, Hegde KV, Kumar S S, Agrawal A. Morbidity audit of 704 traumatic brain injury cases in a dedicated South Indian trauma center. Asian J Neurosurg [serial online] 2018 [cited 2020 Aug 10];13:714-20. Available from:

  Introduction Top

A century ago, Hippocrates predicted, “No head injury is too severe to despair of, nor too trivial to ignore.” Globally, 10 million people suffer traumatic brain injury (TBI) per year to become the third most important cause of mortality and disability by the year 2020, and injury is likely to outshine other noncommunicable diseases by the next decade. Among injury continuum, TBI is the most important missing link of morbidity, mortality, and disability in the trauma management needing protocol-based outcome models for prediction on admission and dedicated neurosurgical care with the instruments such as Glasgow coma scale (GCS) and Glasgow outcome scale (GOS) to provide convincing predictions after 24 h.[1],[2],[3],[4],[5] India is in the rapid rebuilding of injury care system embracing all disciplines against this growing load of TBI as the hidden iceberg for which we need to systematic plan out for methodical approaches with futuristic models on prevailing actuality.[6],[7],[8],[9] In India, we need a holistic move toward the progress of TBI care with a nationwide program connecting multidisciplinary comprehensive response system blended by a vision and mission.[10] Each country needs holistic researches to predict the projectile magnitude and sociodemographic distinctiveness of TBI for a systematic approach for effective prevention, policy development, and plan to guarantee good enough health care for the citizens at the time of real needs. These demanding painful soul-searching ultimately give birth to protocol-based outcomes of victims of TBI.[11],[12],[13],[14],[15]

The purpose of this study was to examine the contribution of risk factors on the types of lesions encountered in relation to the cases with TBI. It was hypothesized that TBI primary care guidelines, based on regional risk factors in remote areas, help improve outcomes even with the unavailability of computerized tomography (CT) and of state-of-the-art neurosurgical facilities.

  Methods Top

This prospective study was conducted on the study participants who were consecutive patients at the Department of Neurosurgery, Narayana Medical College and Hospital, were suspected of TBI and underwent CT scan of the brain for confirmation of diagnosis and followed by protocol-based intervention, thereby as it was judged from time to time by the experts in the field. The present study was an observational, descriptive cross-sectional study conducted during November 2013–October 2015. The study tool was a predesigned and pretested questionnaire. The situational detailed analysis of all the study participants was recorded in a pretested semi-structured data collection tool that included sociodemographic profile (age, gender, occupation, and location), details of injury (injury mechanism, place of injury, and alcohol intake), precise clinical features including GCS score on admission, pupillary reflexes, hemodynamic variables, and CT findings.

Ethical clearance was obtained from the Institute Ethics Committee. All the eligible patients received verbal and written information in their vernacular about the purpose of the study and provided their written informed consent to participate in the study. Patients were admitted for either observation or definitive (i.e., evacuation of intracranial hematomas) as and when indicated. In the latter situations of surgical indications, a high-risk operative consent was also obtained after proper explanation of intraoperative and postoperative predictable and unpredictable elements with hazards of anesthesia as a standard operative procedure. All the findings were collected by observation and interrogation of individual eligible participant by the principal investigator personally when the events and decisions were noted in a predesigned pro forma. Data were stored safely, used only for scientific research purposes and not for the patient care. All the data were cross-checked with the original documents for to ensure consistency, reliability, and accuracy. All consenting consecutive cases suspected with the diagnosis of TBI of all age groups who attended acute care were included in our study. Nonconsenting participants were excluded from the present study.

The results of CT were considered abnormal if there were signs of any of acute traumatic injury (hemorrhage, edema, and skull fracture). CT showing only extracranial injury neither was considered pathological nor was findings correlated with the acute head injury. CT scans were interpreted according to the International standard clinical practice based on the imaging findings of cases and categorized in groups as described in the grading system of original publication by Marshall et al.[16] A complication was defined as deterioration due to the head injury that necessitated neurosurgical intervention, medical treatment, or intensive care. The outcome of the patients at discharge was categorized according to GOS.[17] Data were checked thoroughly and entered into MS Excel sheet and were analyzed using standard statistical techniques using StatsDirect version 3.0.150 (StatsDirect statistical software,, England: 2015). The sociodemographic data were analyzed using descriptive analysis. The associations between the clinical parameters, initial and follow-up CT scan of the brain, and the outcomes were determined using Pearson's Chi-square test; P < 0.05 was taken as the alpha level of significance.

  Results Top


In our study, the TBI involved mainly young adults as majority of the cases (23.15%) were in age group of 31–40 years, followed by same magnitude in two close age groups 21–30 and 41–50 years (22.58%) while in 51–60 years, there were 88 cases (12.50%). Altogether in the productive age group (21–60 years), there were overwhelming majority of 569 (80.82%) cases among all the TBI victim cases. In elderly populations above 60 years, TBI cases were 56 (7.95%) only in our study period.


In our series, an overwhelming majority, i.e., 545 (77.41%) were male in all the age groups. Of them, majority (25.32%) were in 21–30 years age group, followed by 23.30% in 31–40 years age group, followed by 21.28% in 41–50 years age group. Hence, among male TBI cases, altogether 81.47% were in the productive age groups. Among female victims, majority (27.04%) were in 41–50 years age group, followed by 22.64% in 31–40 years age group, followed by 25 (15.72%) in 51–60 years age group. The male to female ratio of 3.4:1 was noted among TBI victims.

Mode of injury

Road traffic accidents (RTAs) were the most common (54.12%) mechanism of injury responsible for TBIs followed by fall (21.31%) and two-wheelers (15.20%). In the productive age groups, main cause (44.89%) of TBI was RTAs (males 262, females 54). Among male victims, RTAs by the fall from two-wheelers were 74 (13.65%); in more than 80 years, all TBI were caused by falls.

Severity of injury

More than half in our series sustained mild TBI (51.42%) while 26.28% moderate TBI and 22.30% severe TBI. Below the age of ten and above 80 years of age, there was no report of severe TBI though 27 (16.98%) among females had such level of injury. Among males, severe TBI victims 102 (18.82%) were in the productive age group.

Clinical presentations

Loss of consciousness was almost a universal clinical presentation in our series with 672 (95.45%) with more among males 521 (96.12) than females 151 (94.97%) though this difference was not significant. Vomiting was the next common finding (76.42%) with more among females 125 (78.62%) than males 413 (76.20%) though this difference was also not significant.

Bleeding from the ear-nose-throat region (ENT) was more in males (33.58%) than females (20.75%) presented with TBI. However, seizures were reported only among ten male victims [Table 1]. We had analyzed to find the association of mode of injury with clinical presentations of the TBI cases. It was noted that in TBIs, the loss of consciousness was a hallmark finding and statistically significant observation in our study, namely, in RTAs (94.72%), in falls (96.73%), in RTA fall from two-wheelers (97.20%), in RTA hit by two-wheelers, and assault (100%). Vomiting was also significantly related with modes of injuries in our study. It was noted in majority cases of RTA (74.93%), in fall (78.43%), in RTA fall from two-wheelers (73.83%), in RTA hit by two-wheelers (84.61%), and assault (100%). Majority of cases did not present with bleeding from ENT region [Table 2]. GCS of TBI cases was correlated with the clinical presentations with severe health injuries, significant relation was noted with loss of consciousness (91.08%), vomiting (63.06%), and ENT bleeding (44.59%). In moderate and mild injuries also, a significant correlation was found with loss of consciousness, vomiting, and ENT bleedings [Table 3].
Table 1: Distribution according to mode of injury, Glasgow coma scale, and clinical presentation

Click here to view
Table 2: Association of mode of injury with clinical presentation

Click here to view
Table 3: Association of Glasgow coma scale with clinical presentation

Click here to view

  Discussions Top

In this prospective observational study, the clinical relevance of abnormal findings and identification of risk factors were analyzed.


In our study, TBI involved mainly young adults and majority of the cases (23.15%) were in age group of 31–40 years, followed by 21–30, and 41–50 years (22.58%); altogether in the productive age group (21–60 years), there were overwhelming majority of 569 (80.82%). In a study from central India, mean reported age of TBI cases was 32–64 years.[18] The International Mission for Prognosis and Clinical Trial (IMPACT) database on TBI through merging individual patient data from eight RCTs and three observational surveys observed that increasing age was strongly related to worse outcome in a continuous linear trend.[19] As described in the literature that the TBI most commonly involves the young adults in between 20 and 50 years, as we observed the reported incidence of TBI in the elderly was less by others also.[20],[21] Published literature reported from India that up to two-thirds of TBI cases in different studies were in third, fourth, and fifth decades.[22],[23],[24],[25],[26],[27],[28],[29] Reverdin reported that 60%–70% of incidence of TBI was among young adults.[30]


In our series, an overwhelming majority was males in all the age groups; altogether 81.47% were in the productive age groups. The male to female ratio of 3.4:1 was noted among TBI victims. Male gender was at more risk to sustain TBI in our study population. This was also reported the similar findings in the present series.[20]

The male to female ratio of 3.4:1 was noted among TBI victims in our study. Bharti et al. reported 85% incidence in males and male to female ratio of 4:1.[21]

It has been reported in literature by Indian scientists that among TBI patients majority were male.[22],[23],[24],[25],[26],[27],[28],[29]

Mode of injury

In our study, RTAs constituted the most common cause of TBI, followed by falls, and injury from two-wheelers; in more than 80 years, all TBI were caused by falls. Many of the studies have reported RTA as the leading cause of TBI. Bharti et al. reported that RTA was the mode of TBI in 64% of the patients.[21] In literature, RTA was reported as the major cause of TBI (ranging from 55% to 72%), followed by falls (20%–30%), and assaults (ranging from 1% to 10%).[31],[32],[33],[34],[35],[36] As a result of the aging population of developed nations, the falls have been suggested as the frequent emerging cause of injury.[37] Indian studies indicated that road traffic injuries are the leading cause of moderate and severe reported in various parts of the country as well as in other parts of the world.[37],[38],[39],[40],[41]

Studies reported that pedestrians and motorcyclists are the most frequent victims of RTAs in India. By 2050, India will have the largest number of automobiles on the planet, leaving behind the United States.[42]

Severity of injury

More than half in our series sustained mild TBI (51.42%) while 26.28% moderate TBI and 22.30% severe TBI. Among males, severe TBI victims 102 (18.82%) were in the productive age group. IMPACT study outcome remained to be closely related with the impact of primary injury as shown by the initial GCS by exploiting the ordinal nature of the GOS and by relating the outcome obtained in individual patients to their baseline prognostic risk.[18],[37],[43] Low GCS at admission was associated with poor outcome. This finding is similar to many other reports from India and other parts of the world.[38] Conventionally, we assessed the severity of TBI by GCS score. Yet, researchers historically are not having unanimous opinion on the positive predictability of GCS on outcome analysis as it does not follow a normal distribution.[44],[45]

Clinical presentations

We also observed that the loss of consciousness was the most common clinical presentation, followed by vomiting, ENT bleed, and posttraumatic seizures. Reported common clinical features of TBI included loss of consciousness, vomiting, headache, nasal/aural discharge, convulsions, shock, respiratory distress, and abdominal distension comparable to our study.[20]

Many studies have correlated clinical parameters to predict the outcome in TBI patients.[46],[47],[48],[49],[50] Other researchers worldwide also noted the history of loss of consciousness mostly in TBI victims with nasal bleed, ear bleed among associated injuries. Common clinical finding in TBI patient of vomiting was also reported.[44],[51] Associated injuries play an additive role in TBI on the final outcome apart from age, sex, severity of injury, intracranial pathology, intracranial pressure, etc.[18] In an Indian hospital-based study, two-thirds of TBI cases had local injury on head and neck region and in suspected polytrauma, radiological evaluation of other body parts revealed evidence of injury was noted one in ten.


Although TBI is a leading cause of mortality, morbidity, disability, and socioeconomic losses in the Indian subcontinent, there is a lack of dependable data in the Indian literature. We attempted to build up an indigenous data set from a dedicated center from South India. Using this study, there is a great potential to carry out a number of secondary analyses using multivariate techniques to evaluate the predictors of outcomes in TBI.


We had several limitations. This was a single-center study. We, therefore, cannot generalize our findings for other trauma centers and all other settings of our country. Further, in all practical purposes, only a certain proportion of all TBIs will reach the hospital, and many of those with severe injuries may have died in the prehospital setting, and many with mild injuries may not have sought clinical care.

Future directions

We believe that the widespread use of this guideline will lead to better management of these patients, prevention of doing unnecessary CT scans, and reducing hospital costs. Application of this guideline in remote areas with unavailability to CT scan and neurosurgical facilities helps physicians decide more easily and safely about patients and prevents unnecessary patients transfer to other centers.

  Conclusion Top

The present study revealed that there is an urgent need to develop ways for TBI registry and standard protocol of TBI intervention. This was only a revelation of the study of a single center. We need to find measures that should be helpful in providing optimal, low cost, and effective treatment to TBI patients. Knowledge about the causes, pattern, and distributions about TBI patients from this study will be extremely helpful in policy making, research, health management, and rehabilitation at the national level in our country and other developing nations.


  • There is an urgent need to implement standard protocol for TBI at national level
  • Capacity building in terms of training and reorientation program for the doctors and health-care facilities should be strengthened
  • Regular monitoring should be done to evaluate adherence to the diagnostic and intervention guideline protocol.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after traumatic brain injury: Development and international validation of prognostic scores based on admission characteristics. PLoS Med 2008;5:e165.  Back to cited text no. 1
Schuhmann MU, Rickels E, Rosahl SK, Schneekloth CG, Samii M. Acute care in neurosurgery: Quantity, quality, and challenges. J Neurol Neurosurg Psychiatry 2001;71:182-7.  Back to cited text no. 2
Agrawal A, Kumar A, Agrawal CS, Pratap A. One year of neurosurgery in the eastern region of Nepal. Surg Neurol 2008;69:652-6.  Back to cited text no. 3
Zitnay G. Lessons from national and international TBI societies and funds like NBIRTT. Re-Engineering of the Damaged Brain and Spinal Cord. Vienna: Springer; 2005. p. 131-3.  Back to cited text no. 4
Gean AD, Fischbein NJ. Head trauma. Neuroimaging Clin N Am 2010;20:527-56.  Back to cited text no. 5
Gopalakrishnan S. A public health perspective of road traffic accidents. J Family Med Prim Care. 2012;1:144-50.  Back to cited text no. 6
Pal R, Agarwal A, Galwankar S, Swaroop M, Stawicki SP, Rajaram L, et al. The 2014 Academic College of Emergency Experts in India's INDO-US Joint Working Group (JWG) White Paper on “Developing Trauma Sciences and Injury Care in India”. Int J Crit Illn Inj Sci 2014;4:114-30.  Back to cited text no. 7
[PUBMED]  [Full text]  
Agrawal A, Kakani A, Baisakhiya N, Galwankar S, Dwivedi S, Pal R. Developing traumatic brain injury data bank: Prospective study to understand the pattern of documentation and presentation. Indian J Neurotrauma 2012;9:87-92.  Back to cited text no. 8
Pal R. Injury epidemiology: The neglected chapter. Nepal J Epidemiol 2012;2:216-8.  Back to cited text no. 9
Pal R. The emergent burden of injury. J Krishna Inst Med Sci Uni 2012; 1 (2):4-6.  Back to cited text no. 10
Traumatic Brain Injury in the United States: The Future of Registries and Data Systems – Future of Registries. CDC. Available from: [Last cited on 2016 Feb 06].  Back to cited text no. 11
Yuh EL, Mukherjee P, Lingsma HF, Yue JK, Ferguson AR, Gordon WA, et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol 2013;73:224-35.  Back to cited text no. 12
Pal R, Munivenkatappa A, Agrawal A, Menon GR, Galwankar S, Mohan PR, et al. Predicting outcome in traumatic brain injury: Sharing experience of pilot traumatic brain injury registry. Int J Crit Illn Inj Sci 2016;6:127-32.  Back to cited text no. 13
[PUBMED]  [Full text]  
Agrawal A, Munivenkatappa A, Shukla DP, Menon GR, Alogolu R, Galwankar S, et al. Traumatic brain injury related research in India: An overview of published literature. Int J Crit Illn Inj Sci 2016;6:65-9.  Back to cited text no. 14
[PUBMED]  [Full text]  
Pal R. Injury science in India: Call for the action. Indian J Prev Soc Med 2012;43:229-32.  Back to cited text no. 15
Marshall LF, Marshall SB, Klauber MR, Van Berkum Clark M, Eisenberg H, Jane JA, et al. The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma 1992;9 Suppl 1:S287-92.  Back to cited text no. 16
Jennett B. Outcome after severe head injury: Definitions and predictions. Med J Aust 1976;2:475-7.  Back to cited text no. 17
Bhole AM, Potode R, Agarwal A, Joharapurkar SR. Demographic profile, clinical presentation, management options in cranio-cerebral trauma: An experience of a rural hospital in central India. Pak J Med Sci 2007;23:724-7.  Back to cited text no. 18
Mushkudiani NA, Engel DC, Steyerberg EW, Butcher I, Lu J, Marmarou A, et al. Prognostic value of demographic characteristics in traumatic brain injury: Results from the IMPACT study. J Neurotrauma 2007;24:259-69.  Back to cited text no. 19
Gupta PK, Krishna A, Dwivedi AN, Gupta K, Bala M, Garg G, et al. CT scan findings and outcomes of head injury patients: A cross-sectional study. J Pioneering Med Sci 2011;1:78-82.  Back to cited text no. 20
Bharti P, Nagar AM, Umesh T. Pattern of trauma in Western Uttar Pradesh. Neurol India 1993;41:49-50.  Back to cited text no. 21
Pruthi N, Ashok M, Kumar VS, Jhavar K, Sampath S, Devi BI. Magnitude of pedestrian head injuries and fatalities in Bangalore, South India: A retrospective study from an apex neurotrauma center. Indian J Med Res 2012;136:1039-43.  Back to cited text no. 22
[PUBMED]  [Full text]  
Kumar S, Singh RK. Pattern of craniocerebral injuries in fatal vehicular accidents in Patna (Bihar). J Indian Acad Forensic Med 2014;36:125-9.  Back to cited text no. 23
Patil AM, Vaz WF. Pattern of fatal blunt head injury: A two year retrospective/prospective medico legal autopsy study. J Indian Acad Forensic Med 2010;32:144-9.  Back to cited text no. 24
Kumar D, Bains V, Sharma BR, Harish D. Descriptive study of head injury and its associated factors at tertiary hospital, Northern India. J Community Med Health Educ 2012;2:141.  Back to cited text no. 25
Gudadinni MR, Nuchhi UC, Angadi MM. A study of road traffic accident cases admitted in BLDEU'S Shri BM Patil Medical College Hospital and Research Centre, Bijapur. Indian J Forensic Med Toxicol 2013;7:48-53.  Back to cited text no. 26
Modi AD, Parmar AP, Parmar VN, Patel DS, Bhagora RV, Darji JA. Demographic profile of head injury cases in Bhavnagar region, Gujarat. Int J Res Med 2014;3:154-7.  Back to cited text no. 27
Punia RK, Verma LC, Pathak D. Pattern of fatal head injuries in road traffic accidents at SMS Hospital, Jaipur-An Autopsy Based Study. Med Leg Update 2014;14:30-4.  Back to cited text no. 28
Reverdin A. Head injury in children. In: Frost E, editor. NIMS: Head Injury, Clinical Management and Research. Geneva, Switzerland: Airsen; 1990. p. 193-204.  Back to cited text no. 29
Ahmed A, Mustahsan SM, Tariq F, Abidi SM, Aslam MO. A cross-sectional study: Head injury in children of Karachi. Int J Endorsing Health Sci 2015;3:18-20.  Back to cited text no. 30
Borkar SA, Sinha S, Agrawal D, Satyarthee GD, Gupta D, Mahapatra AK. Severe head injury in the elderly: Risk factor assessment and outcome analysis in a series of 100 consecutive patients at a Level 1 trauma centre. Indian J Neurotrauma 2011;8:77-82.  Back to cited text no. 31
Verma PK, Tewari KN. Epidemiology of road traffic injuries in Delhi: Result of a survey. Reg Health Forum WHO South East Asia Reg 2004;8:1-10.  Back to cited text no. 32
Parchani A, Maull KI, Sheikh N, Sebastian M. Injury prevention implications in an ethnically mixed population: A study of 764 patients with traumatic brain injury. Panamericana J Trauma Crit Care Emerg Surg 2012;1:27-32.  Back to cited text no. 33
Puvanachandra P, Hyder AA. The burden of traumatic brain injury in Asia: A call for research. Pak J Neurol Sci 2009;4:27-32.  Back to cited text no. 34
Saxena MK, Saddichha S, Pandey V, Rahman A. Pre-hospital determinants of outcome in traumatic brain injury: Experiences from first comprehensive integrated pre-hospital care providers in India: GVK–EMRI experience. Indian J Neurotrauma 2010;7:129-33.  Back to cited text no. 35
Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008;7:728-41.  Back to cited text no. 36
Agrawal A, Galwankar S, Kapil V, Coronado V, Basavaraju SV, McGuire LC, et al. Epidemiology and clinical characteristics of traumatic brain injuries in a rural setting in Maharashtra, India 2007-2009. Int J Crit Illn Inj Sci 2012;2:167-71.  Back to cited text no. 37
[PUBMED]  [Full text]  
Andriessen TM, Horn J, Franschman G, van der Naalt J, Haitsma I, Jacobs B, et al. Epidemiology, severity classification, and outcome of moderate and severe traumatic brain injury: A prospective multicenter study. J Neurotrauma 2011;28:2019-31.  Back to cited text no. 38
Bruns J Jr., Hauser WA. The epidemiology of traumatic brain injury: A review. Epilepsia 2003;44 Suppl 10:2-10.  Back to cited text no. 39
Gururaj G. Epidemiology of traumatic brain injuries: Indian scenario. Neurol Res 2002;24:24-8.  Back to cited text no. 40
Indian Head Injury Foundation. Available from: [Last cited on 2014 Nov 23].  Back to cited text no. 41
Marmarou A, Lu J, Butcher I, McHugh GS, Mushkudiani NA, Murray GD, et al. IMPACT database of traumatic brain injury: Design and description. J Neurotrauma 2007;24:239-50.  Back to cited text no. 42
Waxman K, Sundine MJ, Young RF. Is early prediction of outcome in severe head injury possible? Arch Surg 1991;126:1237-41.  Back to cited text no. 43
Gaddis GM, Gaddis ML. Non-normality of distribution of Glasgow coma scores and revised trauma scores. Ann Emerg Med 1994;23:75-80.  Back to cited text no. 44
Hahn FJ, Gurney J. CT signs of central descending transtentorial herniation. AJNR Am J Neuroradiol 1985;6:844-5.  Back to cited text no. 45
Alberico AM, Ward JD, Choi SC, Marmarou A, Young HF. Outcome after severe head injury. Relationship to mass lesions, diffuse injury, and ICP course in pediatric and adult patients. J Neurosurg 1987;67:648-56.  Back to cited text no. 46
Levin HS, Mendelsohn D, Bruce D, Harward H, Culhane KA, Eisenberg HM. Reversibility of cerebral atrophy after head injury in children. Neurosurgery 1992;31:1117-21.  Back to cited text no. 47
Bruce DA, Schut L, Bruno LA, Wood JH, Sutton LN. Outcome following severe head injuries in children. J Neurosurg 1978;48:679-88.  Back to cited text no. 48
Mahoney WJ, D'Souza BJ, Haller JA, Rogers MC, Epstein MH, Freeman JM. Long-term outcome of children with severe head trauma and prolonged coma. Pediatrics 1983;71:756-62.  Back to cited text no. 49
Gupta P, Singh J, Sharma A, Deen S, Chaudhary A, Bhansal N, et al. Epidemiological analysis and clinical characteristics of traumatic brain injuries in rural Jaipur: The first single centre experience. J Evid Based Med Healthc 2015;2:8686-91.  Back to cited text no. 50
Shekhar C, Gupta LN, Premsagar IC, Sinha M, Kishore J. An epidemiological study of traumatic brain injury cases in a trauma centre of New Delhi (India). J Emerg Trauma Shock 2015;8:131-9.  Back to cited text no. 51
[PUBMED]  [Full text]  


  [Table 1], [Table 2], [Table 3]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)  

  In this article
   Article Tables

 Article Access Statistics
    PDF Downloaded96    
    Comments [Add]    

Recommend this journal