An Official publication of The Asian Congress of Neurological Surgeons (AsianCNS)

Search Article
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Advertise Subscribe Contacts Login  Facebook Tweeter
  Users Online: 878 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Year : 2020  |  Volume : 15  |  Issue : 3  |  Page : 516-520

Nerve to the zygomaticus major muscle for facial reanimation surgery: A cadaveric study for branching patterns and axonal count

1 Department of Surgery, Plastic and Reconstructive Surgery Unit, Lerdsin Hospital, Bangkok, Thailand
2 Department of Neurosurgery, Prasat Neurological Institute, Bangkok, Thailand
3 Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
4 Department of Anatomy, Peripheral Nerve Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Correspondence Address:
Dr. Supasid Jirawatnotai
Department of Surgery, Plastic and Reconstructive Surgery Unit, Lerdsin Hospital, 190 Silom Road, Bangrak, Bangkok 10500
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ajns.AJNS_90_20

Rights and Permissions

Background: In facial reanimation surgery, higher donor facial nerve axonal load yields a superior outcome. Nerves supplying the zygomaticus major muscle are primary donors for the grafting procedure; however, their topography has not been studied in detail. This study identified potential donor nerves by quantifying axon loads of the zygomaticus major muscle through histological analysis of cadaveric specimens. Materials and Methods: Forty-three hemifaces from 26 fresh human cadavers were studied. Branching patterns of nerves were classified according to their shapes. All branches of interest were sectioned and stained for an axon count. The potential donors were mapped into each tributary of nerves supplying the zygomaticus major. Results: Branching patterns were categorized into five types: Y-type (28%), X-type (28%), H-type (19%), E-type (14%), and F-type (11%). The mean number of axons in the most superiorly and proximally located main branches was 1387.33 ± 406.59 in Y-type, 1021.42 ± 187.79 in X-type, 1222.75 ± 193.82 in H-type, 1496.17 ± 364.567 in E-type, and 1353.40 ± 256.07 in F-type (P > 0.05). A topographic relation between facial nerves supplying the zygomaticus major muscle and their mean axonal load was illustrated. The zygomatic/buccal branches were found within 5 mm from Zuker's point in 100% of X-, Y-, H-, and E-type and 75% of F-type specimens. Conclusions: Most proximal facial nerve branches supplying the zygomaticus major, arising at the anterior border of a parotid gland, contained over 900 axons in all five branching types. The primary subbranches may be used in selected cases if donor weakness is a concern. Further, our study provides evidence that demonstrates the precision of Zuker's point.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded26    
    Comments [Add]    

Recommend this journal