An Official publication of The Asian Congress of Neurological Surgeons (AsianCNS)

Search Article
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Advertise Subscribe Contacts Login  Facebook Tweeter
  Users Online: 388 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Year : 2020  |  Volume : 15  |  Issue : 3  |  Page : 753-755

A novel technique for mitigation of the ledge effect caused by the use of a large-lumen catheter during neurointervention: Beanstalk method

1 Neuroendovascular Therapy Center, Aichi Medical University, Nagakute, Aichi, Japan
2 Neuroendovascular Therapy Center, Aichi Medical University; Department of Neurosurgery, Aichi Medical University, Nagakute, Aichi, Japan

Correspondence Address:
Dr. Tomotaka Ohshima
Neuroendovascular Therapy Center, Aichi Medical University, 1-1 Yazakokarimatoa, Nagakute, Aichi 480-1195
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ajns.AJNS_238_20

Rights and Permissions

Navigating a large-caliber catheter into the intracranial artery may generate a “ledge effect,” which disturbs successful neurointervention. Particularly, navigation of a large-lumen aspiration catheter is often required to achieve fast recanalization in acute ischemic stroke cases. Occasionally, the aspirator cannot be passed through the ophthalmic artery origin because of the ledge effect. Here, we report a new technique for mitigation of the ledge effect that involves the use of double micro-guidewires (MGWs). We refer to this technique as the “beanstalk method.” We evaluated the efficacy of our idea using a silicon vascular model. Two 0.014” MGWs are used for navigation of a 0.068” aspirator. After one guidewire is navigated to the distal portion, another MGW is advanced along with the former guidewire, in a spiral fashion, similar to the growth of a beanstalk. The aspirator can then pass with the coaxial double-guidewire, although there is a severe gap in the vessel. We performed an in vitro study to demonstrate the effectiveness of the beanstalk method. The beanstalk method was very useful, even under challenging conditions that did not allow for passage of a conventional coaxial catheter or buddy-wire. The beanstalk method effectively decreases the ledge effect because of the shape of the two wires just ahead of the catheter, which contrasts with the hardness of the spiral wires. In cases involving challenging vasculature, the beanstalk method achieves smoother catheter navigation than the conventional coaxial method or buddy-wire technique.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded20    
    Comments [Add]    

Recommend this journal