Close
  Indian J Med Microbiol
 

Figure 2: Illustrative case, posterior circulation. A middle-aged female who presented with high-grade subarachnoid hemorrhage. Angiography demonstrated a wide-necked aneurysm located proximal to the origin of the posterior inferior cerebellar artery (a). Treatment options possible for this patient include direct aneurysm clipping or aneurysm trapping. Because the aneurysm was not at a branch point and the parent vessel was somewhat irregular, the underlying pathology was believed to be a vessel dissection, favoring vessel occlusion or sacrifice as a definitive treatment. As the patient had a robust left vertebral artery and the aneurysmal segment was proximal to the posterior inferior cerebellar artery, a right vertebral artery occlusion was planned. The operative technique described above was utilized for this patient, with a working view of the posterior inferior cerebellar artery origin selected (b). After following the steps listed previously, the aneurysmal segment was not densely coiled initially and was still filling despite dense coiling of the more proximal vertebral artery. With the balloon inflated, the distal defining coil was detached, the coiling microcatheter was brought back a few millimeters, and a few more soft coils were placed into the aneurysmal segment of the vertebral artery. The balloon was deflated, and control angiography demonstrated complete right vertebral artery occlusion, no filling of the aneurysm, and preservation of the posterior inferior cerebellar artery (c). Postoperative magnetic resonance imaging demonstrated no ischemia, and the patient went on to make an uncomplicated recovery

Figure 2:  Illustrative case, posterior circulation. A middle-aged female who presented with  high-grade subarachnoid hemorrhage. Angiography demonstrated a wide-necked aneurysm located proximal to the origin of the posterior inferior cerebellar artery (a). Treatment options possible for this patient include direct aneurysm clipping or aneurysm trapping. Because the aneurysm was not at a branch point and the parent vessel was somewhat irregular, the underlying pathology was believed to be a vessel dissection, favoring vessel occlusion or sacrifice as a definitive treatment. As the patient had a robust left vertebral artery and the aneurysmal segment was proximal to the posterior inferior cerebellar artery, a right vertebral artery occlusion was planned. The operative technique described above was utilized for this patient, with a working view of the posterior inferior cerebellar artery origin selected (b). After following the steps listed previously, the aneurysmal segment was not densely coiled initially and was still filling despite dense coiling of the more proximal vertebral artery. With the balloon inflated, the distal defining coil was detached, the coiling microcatheter was brought back a few millimeters, and a few more soft coils were placed into the aneurysmal segment of the vertebral artery. The balloon was deflated, and control angiography demonstrated complete right vertebral artery occlusion, no filling of the aneurysm, and preservation of the posterior inferior cerebellar artery (c). Postoperative magnetic resonance imaging demonstrated no ischemia, and the patient went on to make an uncomplicated recovery